您的浏览器版本过低,为保证更佳的浏览体验,请点击更新高版本浏览器

以后再说X

欢迎访问南通海恒科研仪器有限公司网站!

全国订购热线:
13382355107

SFED-5型超临界CO2干燥装置

超临界CO2干燥技术可以有效地消除纳米材料孔隙喉道内液体聚集的毛管压力效应 能制得具有较好分散性的超细孔隙结构气凝胶。随着研究工作的深入 应用超临界CO2流体干燥技术制备气...

  • 产品说明
  • Description
  • 产品目录
  • 产品须知
  • 产品知识

SFED-5型超临界CO2干燥装置

        超临界CO2干燥技术可以有效地消除纳米材料孔隙喉道内液体聚集的毛管压力效应能制得具有较好分散性的超细孔隙结构气凝胶。随着研究工作的深入应用超临界CO2流体干燥技术制备气凝胶已经具备很好的发展前景。超临界CO2 萃取干燥法是超临界萃取技术和超临界流体干燥技术的结合先进技术。
    一、设备概述   
        SiO2气凝胶是一种新型的结构可控的孔状材料,具有多种独特的性质,例如低的折射率、低的弹性模量、低声阻抗、低热导率、强吸附性、典型的分形结构等,可被制作成声阻抗耦合材料、过滤材料、高温隔热材料等多种高性能材料,在切仑可夫探测器、催化剂及催化剂载体、宽带减反射、可充电电池、防眩光涂层、低介电常数绝缘层、超高速集成电路基片、高激光损伤阈值增透薄膜、绝热涂层等众多领域,都具有广阔的应用前景。

        溶胶-凝胶过程中溶胶粒子先聚集形成一个个团簇,这些团簇不断扩大且相互连接形成网络状的大团簇,当扩展到整个容器即得到凝胶。凝胶形成后并不等于溶胶-凝胶过程结束,还要经过一系列后处理(包括:老化、防开裂、干燥等)才能得到性能独特的气凝胶。
        凝胶形成后,溶液中的溶胶粒子和小凝胶团簇继续聚集粘连,从而扩展到整个凝胶络,该过程即为老化。这些老化过程是使凝胶网络变粗、变滑、总体比表面积下降,网络的孔径分布、组成网络的胶体颗粒半径的分布变窄。
        在凝胶的后处理过程中将不可避免的引起凝胶表面的开裂,而导致凝胶开裂的应力主要源于毛细管压力,这种由填充于凝胶骨架孔隙中的液体的表面张力所引起的毛细管压力,使凝胶收紧重排、体积收缩。可以采用以下几种措施减少干燥过程中的开裂程度:
    (1)减小溶剂的表面张力

        在反应过程中经水解和缩聚形成的醇凝胶,其网络孔洞中充满的溶剂主要是水和醇,由于水的表面张力很大,因此在干燥过程中毛细管的附加压力很大,这是造成气凝胶制备过程中开裂破碎的直接原因。如果通过溶剂替换,用表面张力小的溶剂将水和醇替换出来,这些表面张力小的溶剂蒸发干燥时,附加压力将大大减小,从而降低干燥过程中的开裂。
    (2)改善凝胶中孔洞的均匀性
        由于有机金属化合物直接水解和缩聚得到的凝胶网络结构一般不可能形成得非常均匀,这就造成凝胶内部的孔道有粗有细,这样在同一块凝胶内部应力的不均衡往往造成凝胶在干燥过程中的开裂或粉碎。因此在溶胶-凝胶过程中添加控制干燥的化学添加剂,它能促使醇凝胶的网络孔道均匀,产生比较均匀的凝胶孔结构,从而可以减少干燥过程中凝胶破裂的可能性,缩短干燥周期。
    (3)凝胶的表面修饰
        如果对醇凝胶的表面进行修饰改善,调节和控制凝胶表面羟基的数量和表面电性,使凝胶骨架表面具有一定的憎水性,从而使骨架和溶剂之间的接触角增大,这样就能大大减小毛细管附加压力,进而减少干燥过程中的开裂程度。
    二、主要技术参数
        干燥釜:5L/30MPa300
        分离器2L/20MPa85
        制冷系统:5100kcal/h,风冷,进口核心部件
        储罐:4L/16MPa
        高压输送泵:50L/40MPa
        总功率:15kW

    Supercritical CO2 drying technology can effectively eliminate capillary pressure effect in the pore throat of nanomaterials and can produce ultrafine pore structure aerogels with good dispersibility. With the development of research work the preparation of aerogels by supercritical CO2 fluid drying technology has good prospects. Supercritical CO2 extraction drying is an advanced technology combining supercritical extraction technology and supercritical fluid drying technology.
    1、 Equipment Overview
    SiO2 aerogel is a new type of porous material with controllable structure. It has many unique properties such as low refractive index low elastic modulus low acoustic impedance low thermal conductivity strong adsorption and typical fractal structure. It can be made into many high-performance materials such as acoustic impedance coupling material filter material high temperature insulation material and so on. Catalyst and catalyst support broadband antireflection rechargeable battery anti glare coating low dielectric constant insulating la
    yer ultra-high speed integrated circuit substrate high laser damage threshold antireflection film thermal insulation coating and many other fields have broad application prospects.
    During sol-gel process the sol particles first aggregate into clusters and these clusters expand and connect to form large clusters of networks. Gel formation is not equal to the end of the sol gel process but also after a series of postprocessing (including aging cracking prevention drying etc.) the unique aerogels can be obtained.
    After the gel is formed the sol particles and small gel clusters in the solution continue to adhere and expand to the whole gel network which is called aging. These aging processes make the gel network coarser slippery and the overall specific surface area decreases. The pore size distribution of the network and the distribution of colloidal particle radius of the network are narrowed.
    The postprocessing of gel will inevitably cause cracking on the gel surface and the stress that causes the gel cracking is mainly from capillary pressure. The capillary pressure caused by the surface tension of the liquid filled in the gel skeleton pores will make the gel tighten up rearrangement and volume contraction. The following measures can be taken to reduce the degree of cracking during drying:
    (1) Reduce the surface tension of the solvent
    In the process of hydrolysis and condensation the pores in the gels are mainly water and alcohol. Due to the large surface tension of the water the additional pressure of the capillary is very large during drying which is the direct reason for the cracking and fragmentation of the aerogels. If water and alcohol are replaced by solvents with low surface tension through solvent replacement the additional pressure will be greatly reduced during evaporation and drying of these solvents with low surface tension so as to reduce the cracking during drying.
    (2) improving the uniformity of the pores in the gel.
    Due to the direct hydrolysis and condensation of organome 
    tallic compounds the gel network structure can not be formed very uniformly which results in coarse and fine pores in the gel so that the stress imbalance in the same gel often causes the cracking or crushing of the gel in drying process. Therefore adding controlled dry chemical additives in sol-gel process can promote the uniform network pore size of the alcohol gel and produce a more uniform gel pore structure thereby reducing the possibility of gel breaking in drying process and shortening the drying cycle.
    (3) surface modification of gelatin
    If the surface of the alcohol gel is modified the number and surface electrical conductivity of the gel surface can be adjusted and controlled so that the hydrophobic surface of the gel skeleton will have a certain degree of hydrophobicity so that the contact angle between the skeleton and the solvent will increase. This will greatly reduce the additional pressure of the capillary and reduce the degree of cracking in the drying process.
    2、 Main technical parameters
    Drying kettle: 5L / 30MPa 300 ℃
    Separator 2L / 20MPa 85 ℃
    Refrigeration system: 5100kcal / h air cooling imported core components
    Storage tank: 4L / 16MPa
    High pressure transfer pump: 50L / 40MPa
    Total power: 15kw

    超临界二氧化碳干燥装置型号

    干燥釜规格

    超临界二氧化碳干燥设备型号

    干燥釜规格

    SFED-0.2型超临界干燥装置

    0.2L/30MPa

    SFED-0.5型超临界干燥装置

    0.5L/30MPa

    SFED-01型超临界干燥装置

    1L/30MPa

    SFED-02型超临界干燥装置

    2L/30MPa 

    SFED-05型超临界干燥装置

    5L/30MPa

    SFED-06型超临界干燥装置

    1L+5L/30MPa 

    SFED-10型超临界干燥装置

    10L/25MPa 

    SFED-20型超临界干燥装置

    20L/20MPa 

    SFED-25型超临界干燥装置

    25L/20MPa

    SFED-35型超临界干燥装置

    35L/20MPa

    SFED-50型超临界干燥装置

    50L/20MPa

    SFED-100型超临界干燥装置

    100L/20MPa 

    SFEY-0.2型超临界干燥装置

    0.2L/30MPa/300℃

    SFEY-0.5型超临界干燥装置

    0.5L/30MPa/300℃

    SFEY-01型超临界干燥装置

    1L/30MPa/300℃

    SFEYD-02型超临界干燥装置

    2L/30MPa/300℃

    SFEY-05型超临界干燥装置

    5L/30MPa/300℃

    SFEY-06型超临界干燥装置

    6L/30MPa/300℃

    SFEY-10型超临界干燥装置

    10L/25MPa/300℃

    SFEY-20型超临界干燥装置

    20L/20MPa/300℃

    SFEY-25型超临界干燥装置

    25L/20MPa/300℃

    SFEY-35型超临界干燥装置

    35L/20MPa/300℃


        SFED-5型超临界CO2干燥装置又名SFE-5型超临界CO2干燥装置,是利用人工模拟技术搭建温度、压力与流量等多参数共同作用的环境,与现代精密制造与智能控制相结合,在设备各部件和控制的联合作用下,完成设备工艺的设计意图,实现研究分析的目的。
        作为SFED-5型超临界CO2干燥装置生产厂家,我们在与您的沟通中,会对设备的设计要求、使用介质、样品规格、流体特性、过程注意点、特殊部件、使用环境等进行详细的询问,便于我们对设备的设计、选材、加工等了解透彻,更好地进行工艺、方案等的制作,也方便我们对设备安全、质量等进行掌握。
        作为SFED-5型超临界CO2干燥装置生产供应单位,我们对所生产的超临界流体萃取设备、超临界气凝胶干燥设备、超临界二氧化碳清洗设备、高温高压反应釜、磁搅拌反应装置、石油科研仪器、 岩心分析仪器、岩心制备装置、容器、夹持器、模型管、高压阀门、管线、泵等设备、部件进行多套安全措施相结合的方式进行配置,确保设备使用的安全、安全、再安全。
        因科学研究的种类繁多,存在区域性、阶段差异性,所以超临界流体设备和石油仪器、实验室仪器的工艺、参数、配置也有所不同,外形及框架材料更是会与行业、运输、使用现场等因素有关,所以,我们一般会与您进行多次技术交流与确认,将设备设计的意图、因素等进行多方面考虑。
        在进行超临界萃取装置、超临界干燥装置、超临界细微粒子制备设备、超临界清洗装置、超临界反应装置、超临界发泡设备、石油科研仪器、岩心岩相制备装置、岩心分析仪器、地层流体分析仪器、提高采收率仪器、非常规油气开采实验仪器等设计制作之前,我们会与您就设备的使用压力、温度、介质的性质、过程中的特性、材料的选用、部件的结构、安全指标、材质选用等方面进行详细确认,以完善设备的设计、制作和使用安全。
        SFED-5型超临界CO2干燥装置在使用过程中,请严格按照操作规程进行操作,规范操作步骤,确保安全稳定;禁止超范围、超负荷进行作业;禁止私自改装或接入别的部件,若需进行改装,可与我们联系,我们会给您提供合理建议,不收取任何费用。
        欢迎您对超临界流体设备和石油科研仪器、实验室反应釜等设备垂询指导,我们24小时服务热线为13382355107。

    一、超临界流体(SCF)的特性
        超临界流体(SCF)是指物体处于其临界温度(Tc)和临界压力(Pc)以上状态时,向该状态气体加压,气体不会液化,只是密度增大,具有类似液体的性质,同时还保留气体的性能。
        超临界流体兼具气体和液体的优点,其密度接近于液体,溶解能力较强,而黏度与气体相近,扩散系数远大于一般的液体,有利于传质。另外,超临界流体具有零表面张力,很容易渗透扩散到物体的微孔内。因此,超临界流体具有良好的溶解和传质特性,能与物体很快地达到传质平衡。
    二、超临界流体干燥的原理
        超临界流体干燥过程是利用其溶解能力与表面张力为零的特性,即利用在超临界状态下,表面张力为零的特点,样品微结构处于一个压力相对平衡的状态,而不影响细微结构的情况下,利用超临界流体的溶解携带能力,将溶剂置换携带而出,然后借助减压、降温的方法使超临界流体变成普通气体,保证样品初始结构状态的情况下,完成干燥处理。
    三、超临界流体干燥过程的主要影响因素
    (1)干燥压力的影响
        干燥压力是SFED的重要参数之一,样品在整个干燥过程中,形成超临界状态和稳定置换状态,回归普通状态这三个过程中,压力的稳定控制和梯度控制十分重要,压力的变化过大或波动,均会对样品的内部框架结构造成损伤,从而造成碎裂、塌陷等现象。
    (2)干燥温度的影响
        温度对超临界干燥的影响比较复杂,一定程度上,温度升高会提高超临界流体的溶解能力,从而提升其溶剂置换携带能力,缩短干燥处理时间,但是,温度升高会形成普通意义上的加热干燥,影响样品表面质量,造成样品表面聚缩或膨胀,严格意义上讲,这也是表面塌陷的一种表现。温度太低,长时间处于低温液态环境,流体流动后,会造成大面积样品的表面褶皱变形。所以对温度的控制和工艺处理十分重要。
    (3)压力变化过程
        压力的控制是整个干燥过程的关键点之一,超临界二氧化碳干燥和超临界二氧化碳萃取干燥都经历浸泡置换,升压超临界流体置换,稳压超临界流体置换,降压超临界流体气化等过程,也就是升压、稳压、降压这三个主要工序,控制时,要以微量变化为基础,平稳操作,避免压力的变化过大,这样操作比较费时,但对样品的质量有保证。
    (4)温度控制的影响
        温度控制也是干燥过程的关键点之一,缓慢升温至超临界状态后,其控制应实现自动控制,超临界流体的动态温度要稳定,防止高低温流体对样品表面造成影响,高于釜内温度则会造成表面开裂,聚缩,低于釜内温度则会造成结冰,褶皱,对样品质量都不好。
    (5)工艺控制
        工艺控制是样品处理的工艺步骤过程,在干燥结束后,好多样品在常温常压取出时,整体质量都是很好,但是放置于空气中一段时间后,会发生缩小的变化,表面质量变化不大,主要在于样品内部的塌陷,其影响因素是多样的,也不排除在工艺控制上出现了问题,所以在操作时,对干燥结束后的样品需增添控制,放置功亏一篑。
    (6)流量控制
        流量控制也是干燥过程中的关键点之一,流量大,置换携带速度快,节约干燥时间,但超临界干燥过程恰恰相反,流量不宜过快,整个置换过程是一个缓慢的过程,过快的流量会造成釜内稳定空间上的冲击作用,对样品表面质量的影响明显。
    (7)工艺结构
        除上述影响因素外,工艺结构的影响也比较重要,釜体的高度,样品的位置、流体的方向等。

图片名 客服